Gieseker Stability and the Fourier-mukai Transform for Abelian Surfaces
نویسنده
چکیده
The preservation properties of Gieseker stability and semistability under the Fourier transform of Mukai are discussed. A fundamental lemma is proved describing the degree of sheaves whose Fourier transforms are concentrated in degrees 0 or 2. This is used to prove results about the behaviour of both Gieseker stability and Mumford-Takemoto stability under the Fourier transform.
منابع مشابه
Twisted Stability and Fourier-mukai Transform
where xi ∈ H(X,Z) (resp. yi ∈ H(X,Z)) is the 2i-th component of x (resp. y) and x = x0 − x1 + x2. It is now called Mukai lattice. For a coherent sheaf E on X , we can attach an element of H(X,Z) called Mukai vector v(E) := ch(E) √ tdX , where ch(E) is the Chern character of E and tdX is the Todd class of X . For a Mukai vector v ∈ H(X,Z) and an ample divisor H , let MH(v) be the moduli space of...
متن کاملA Note on Fourier-mukai Transform
Let X be an abelian or a K3 surface defined over C. The Fourier-Mukai transform is a very useful tool for analysing the moduli spaces of sheaves on X . In order to apply the Fourier-Mukai transform to an actual problem, it is important to study the problem on the preservation of stability under the Fourier-Mukai transform. In [Y2], [Y3], we discussed this problem and showed that the stability i...
متن کاملTwisted Fourier-Mukai transforms for holomorphic symplectic fourfolds
We apply the methods of Căldăraru to construct a twisted FourierMukai transform between a pair of holomorphic symplectic four-folds. More precisely, we obtain an equivalence between the derived category of coherent sheaves on a certain four-fold and the derived category of twisted sheaves on its ‘mirror’ partner. As corollaries, we show that the two spaces are connected by a one-parameter famil...
متن کاملSemi-homogeneous Sheaves, Fourier-mukai Transforms and Moduli of Stable Sheaves on Abelian Surfaces
This paper studies stable sheaves on abelian surfaces of Picard number one. Our main tools are semi-homogeneous sheaves and Fourier-Mukai transforms. We introduce the notion of semi-homogeneous presentation and investigate the behavior of stable sheaves under Fourier-Mukai transforms. As a consequence, an affirmative proof is given to the conjecture proposed by Mukai in the 1980s. This paper al...
متن کاملHolonomic D-modules on Abelian Varieties
We study the Fourier-Mukai transform for holonomic D-modules on complex abelian varieties. Among other things, we show that the cohomology support loci of a holonomic D-module are finite unions of linear subvarieties, which go through points of finite order for objects of geometric origin; that the standard t-structure on the derived category of holonomic complexes corresponds, under the Fourie...
متن کامل